

ABOUT THE AUTHOR

Qualification: B. Sc. Engg (Mechanical), N.I.T. Rourkela.

ING-IABSE Workshop on "Design, Construction and Maintenance of Steel Bridges", Dehradun, 19th & 20th October, 2024

CORROSION PROTECTION PVT LTD.

GYANA RANJAN MOHANTY **Experience in Projects**: Fabrication, erection, Repairs and Restoration of Bridges & Hydro Mechanical Structures. Restoration of Monuments of Archaeological Importance. Erection and Commissioning of Coke Ovens, Coal Handling Plants, Mineral Processing and other Industrial Plants

Experience in Manufacturing: Fabrication of Structures, Bridge Bearings, Liquified petroleum Gas cylinders, Heat exchangers & Recuperators, Mineral Processing Equipment, Steel Plant equipment, Steel castings, Vacuum Investment castings for Aerospace and Defence Applications and Electron Beam Welding

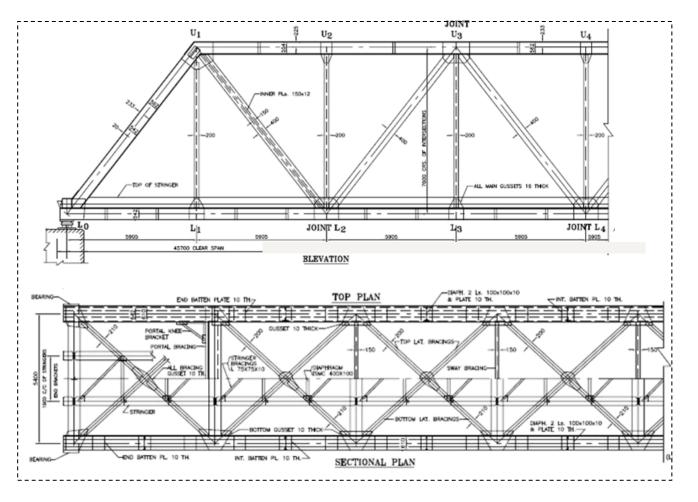
Membership with different technical bodies: Fellow of Institution of Engineers (India), Life Member of Indian Institute of Welding, Member of IRC-B-5 and IRC-B-6 of Indian Road Congress, Bureau of Indian Standards- CED 7:6

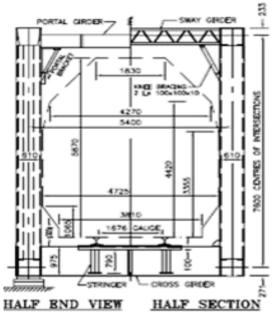
GUIDELINES
FOR
FABRICATION
& ERECTION

ING-IABSE Workshop on "Design, Construction and Maintenance of Steel Bridges", Dehradun, 19th & 20th October, 2024

AGENDA

- 1. FABRICATION
- 2. PROTECTION AGAINST CORROSION
- 3. ASSEMBLY & ERECTION


FABRICATION



CASE STUDY: GIRDER DRAWING (45.7 M)

COMPONENTS OF A (45.7M) THROUGH GIRDER

S/NO	MEMBER	ТҮРЕ	WELD DESCRIPTION
1	BOTTOM CHORD	Built up channels	Fillet
2	TOP CHORD	Built up section	Fillet
3	VERTICALS	Built up I beams	Fillet
4	DIAGONALS	Boxed up rolled channels	Fillet
5	END RAKER	Built up channels	Fillet
6	CROSS GIRDERS	Built up I-beams	Fillet
7	RAIL BEARERS	Built up I-beams	Fillet
8	SWAY GIRDERS	Built up Truss	NA
9	CROSS BRACINGS	Rolled angle	NA
10	PORTALS	Built up I -section	Fillet
11	GUSSETS	Plates	NA

WELD JOINTS

ING-IABSE Workshop on "Design, Construction and Maintenance of Steel Bridges", Dehradun, 19th & 20th October, 2024

There are 2 types of weld joints

1.

Fillet Weld

Butt Weld

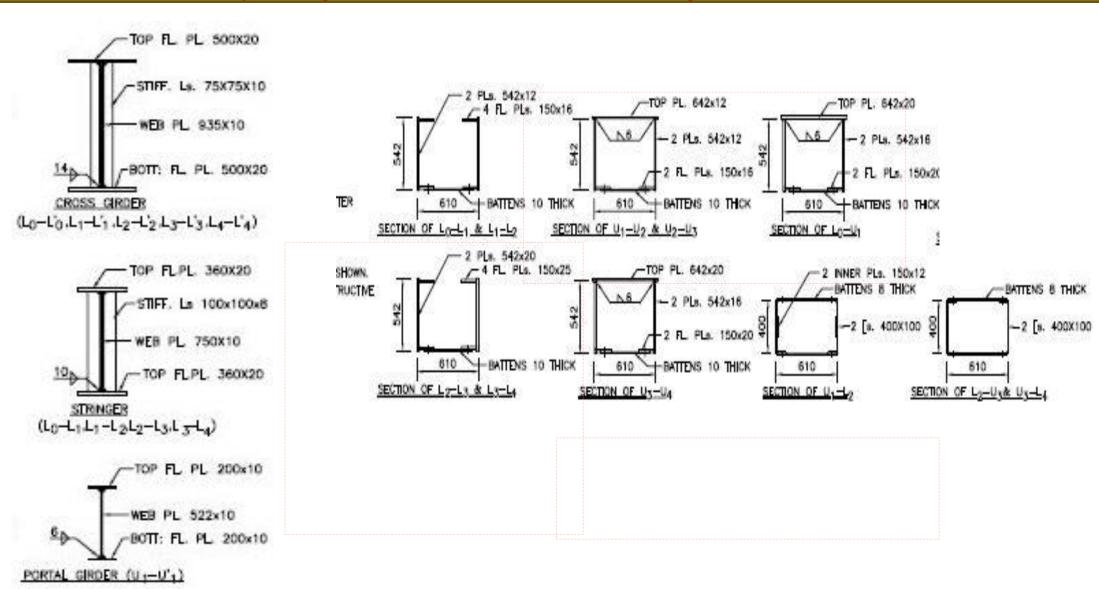
WELDING PROCESSES

1-SMAW (SHIELDED METAL ARC WELDING)

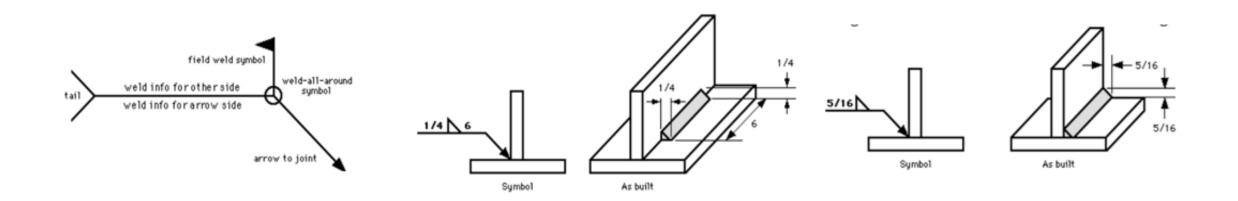
2-SAW (SUBMERGED ARC WELDING)

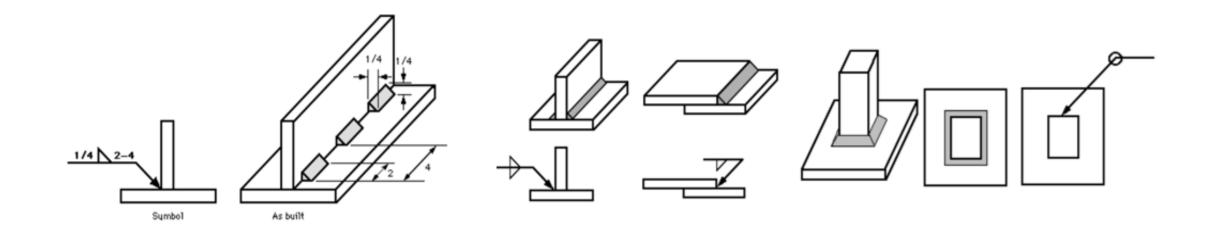
3-GMAW (GAS METAL ARC WELDING)

4-FCAW (FLUX CORED ARC WELDING)


2.

DIFFERENT BUILTUP SECTIONS





WELD SYMBOLS

BUTT WELD

	1 Side	Both Sides	Arrow Side	Other Side	Both Sides
Square Groove			<u></u>	~	<u>-</u>
V-Groove	Y			*	$\swarrow\!$
Bevel Groove				< ⊾	<
U-Groove	<u> </u>		~	X Y	<u> </u>
J-Groove			₹	₹ــــــ	*
Flare V- Groove	$\bigcirc\bigcirc$	$\bigcirc\bigcirc$		*	\rightarrow
Flare Bevel Groove			K		$\swarrow \vdash \!$

MATERIAL PROPERTIES

MECHANICAL PROPERTIES

			(Cla			ical Properties , 11.3.1, 12.2 and				
Grade Designation	Quality	Tensile Strength R _m , Min MPa ¹⁾	,	Yield Stress R _{eH¹} Min MPa ¹⁾		Percentage Elongation A, Min at Gauge Length,	Internal Bend Diameter Min (See Note 2)		Charpy Impact Test (See Note 3)	
		(See Note 1)	<20	20-40	>40	L ₀ =5.65	≤ 25	>25	Temp °C	Min J
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
E 250	A BR B0 C	410	250	240	230	23	2t	3t	— RT 0 (-) 20	27 27 27 27
E 275	BR B0 C	430	275	265	255	22	2t	3t	RT 0 (-) 20	27 27 27
E 300	BR B0 C	440	300	290	280	22	2t	_	RT 0 (-) 20	27 27 27
E 350	BR B0 C	490	350	330	320	22	2t	_	RT 0 (-) 20	27 27 27
E 410	BR B0 C	540	410	390	380	20	2t	-	— RT 0 (-) 20	25 25 25
E 450	A BR	570	450	430	420	20	2.5t	_	RT	20
E 550	A BR	650	550	530	520	12	3t	_	RT	15
E 600	A BR	730	600	580	570	12	3.5t	_	RT	_ 15
E 650	A BR	780	650	630	620	12	4t	_	— RT	_ 15

GRADES OF STEEL

ING-IABSE Workshop on "Design, Construction and Maintenance of Steel Bridges", Dehradun, 19th & 20th October, 2024

IS2062 - Specifies 9 grades of steel starting with E250 to E650

For grades E 250 to E 410(5 Grades), there are four sub-qualities (A, BR, B0 and C) For grades E 450 to E 650(4 Grades), there are two sub-qualities (A and BR).

Impact test not required, semi-killed/killed

BO: Impact test mandatory at 0°C semi-killed/killed

C: Impact test optional; if required at room temperature, semi-killed/killed

C: Impact test mandatory at -20°C,

MECHANICAL PROPERTIES

			(Cla			cal Propertie 11.3.1, 12.2 <i>a</i> r				
Grade Designation	Quality	Tensile Strength R _m , Min MPa ¹⁾	,	Yield Stres R _{eH} , Min MPa ¹⁾	s	Percentage Elongation A, Min at Gauge Length,	Inter Ber Diam M	nd ieter in	Chai Impact (See No	Test
		(See Note 1)	<20	20-40	>40	$L_{o} = 5.65$	≤ 25	>25	°C	J
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
E 250	A BR B0 C	410	250	240	230	23	2t	3t	— RT 0 (-) 20	27 27 27
E 275	A BR B0 C	430	275	265	255	22	2t	3t	— RT 0 (-) 20	27 27 27
E 300	A BR B0 C	440	300	290	280	22	2t	_	— RT 0 (-) 20	27 27 27
E 350	A BR B0 C	490	350	330	320	22	2t	_	— RT 0 (-) 20	27 27 27
E 410	A BR B0 C	540	410	390	380	20	2t	_	— RT 0 (-) 20	25 25 25
E 450	A BR	570	450	430	420	20	2.5t	_	— RT	20
E 550	A BR	650	550	530	520	12	3t	_	— RT	_ 15
E 600	A BR	730	600	580	570	12	3.5t	_	— RT	15
E 650	A BR	780	650	630	620	12	4 <i>t</i>	_	— RT	_ 15

CHEMICAL COMPOSITION AND WELDABILITY OF STEEL

ING-IABSE Workshop on "Design, Construction and Maintenance of Steel Bridges", Dehradun, 19th & 20th October, 2024

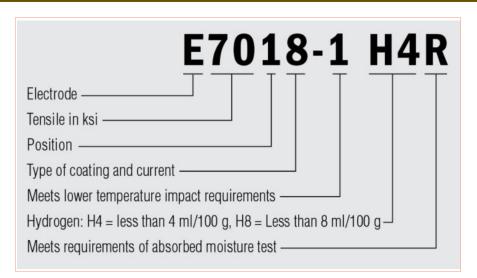
Grade Quality Designation			Ladl	e Analysis, P	ercent, Max		Carbon Equivalent	Mode of Deoxidation
		С	Mn	s	P	Si	(CE), Max	2172101178
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	A	0.23	1.50	0.045	0.045	0.40	0.42	Semi-killed/killed
E 250	BR B0	0.22	1.50	0.045	0.045	0.40	0.41	Semi-killed/killed
	C	0.20	1.50	0.040	0.040	0.40	0.39	Killed
	A	0.23	1.50	0.045	0.045	0.40	0.43	Semi-killed/killed
E 275	BR B0	0.22	1.50	0.045	0.045	0.40	0.42	Semi-killed/killed
	С	0.20	1.50	0.040	0.040	0.40	0.41	Killed
E 300	A BR B0	0.20	1.50	0.045	0.045	0.45	0.44	Semi-killed/killed
	С	0.20	1.50	0.040	0.040	0.45	0.44	Killed
E 350	A BR B0	0.20	1.55	0.045	0.045	0.45	0.47	Semi-killed/killed
	С	0.20	1.55	0.040	0.040	0.45	0.45	Killed
E 410	A BR B0	0.20	1.60	0.045	0.045	0.45	0.50	Semi-killed/killed
	С	0.20	1.60	0.040	0.040	0.45	0.50	Killed
E 450	A BR	0.22	1.65	0.045	0.045	0.45	0.52	Semi-killed/killed
E 550	A BR	0.22	1.65	0.020	0.025	0.50	0.54	Semi-killed/killed
E 600	A BR	0.22	1.70	0.020	0.025	0.50	0.54	Semi-killed/killed
E 650	A BR	0.22	1.70	0.015	0.025	0.50	0.55	Semi-killed/killed
E 650	A BR	0.22	1.70	0.015	0.025	0.50	0.55	Semi-killed/killed
E 900	BR	0.22	1:10	0.020	0.025	0.50	0.54	Semi-killed-killed

$$CE^* = C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15$$

*CE stands for CARBON EQUIVALENT

- The lower the value of the CE the higher the weld ability.
- Preheat is required to successfully weld those materials that have high values

CARBON EQUIVALENT	WELDABILITY
Up to 0.35	Excellent
0.36-0.40	Very Good
0.41-0.45	Good
0.46-0.50	Fair
Over 0.50	Poor


WELDING ROD NOMENCLATURE

CLASSIFICATION TABLE

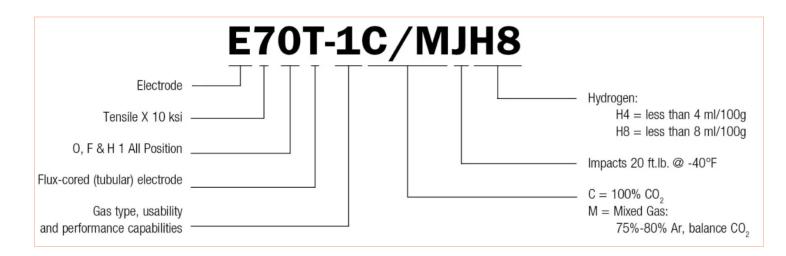
ING-IABSE Workshop on "Design, Construction and Maintenance of Steel Bridges", Dehradun, 19th & 20th October, 2024

OLMOON TOM	ION INDEL		
Class	Electrode Coating	Penetration	Current Type
Exxx0	Cellulose, Sodium	Deep	DCEP
Exxx1	Cellulose, Potassium	Deep	AC, DCEP
Exxx2	Rutile, Sodium	Medium	AC, DCEN
Exxx3	Rutile, Potassium	Light	AC, DCEP, DCEN
Exxx4	Rutile, Iron Powder	Medium	AC, DCEP, DCEN
Exxx5	Low Hydrogen, Sodium	Medium	DCEP
Exxx6	Low Hydrogen, Potassium	Medium	AC, DCEP
Exxx7	Iron Powder, Iron Oxide	Medium	AC, DCEN
Exxx8	Low Hydrogen, Iron Powder	Medium	AC, DCEP
Exxx9	Iron Oxide, Rutile, Potassium	Medium	AC, DCEP, DCEN

Si	uffix	Additional Requirement
-1		Increased toughness (impact strength) for E7018 electrodes. Also increased ductility in E7024 electrodes.
-1	Λ	Meets most military requirements - greater toughness, lower moisture content as received after exposure, diffusible hydrogen limits for weld metal.
-H -H		Indicates the maximum diffusible hydrogen limit measured in millimeters per 100 grams (mL/100g). The 4, 8, and 16 indicates what the limit is. Example: -H4 = 4mL per 100 grams

WELDING POSITIONS

- **1** Flat, Horizontal, Vertical (up), Overhead
- **2** Flat, Horizontal
- 4 Flat, Horizontal, Overhead, Vertical (down)



SPECS OF MIG WIRES

ER 7	0 S - 3
Electrode or rod	
Tensile in ksi	
Solid	
Chemical composition & Shielding Gas	

ING-IABSE Workshop on "Design, Construction and Maintenance of Steel Bridges", Dehradun, 19th & 20th October, 2024

QAP ASSU

QAP-(QUALITY ASSURANCE PLAN)

2.

WPQR - (WELDING PROCEDURE QUALIFICATION RECORD)

3.

WPSS-(WELDING PROCEDURE SPECIFICATION SHEET)

QAP -QUALITY ASSURANCE PLAN

ING-IABSE Workshop on "Design, Construction and Maintenance of Steel Bridges", Dehradun, 19th & 20th October, 2024

QUALITY ASSURANCE PLAN FOR 45.7 M. SPAN WELDED THROUGH GIRDER.

01. Name of Work : Construction of Bridge No.449 over River Brahmani (29 x 45.7 M) in Connection with 3rd Line Between Jakhapura & Haridaspur on

Howrah-Chennai Main Line in East Coast Railways, in ORISSA.

02. Purchase Order No. : LOA No.RVNL/BBS/TENDERS/JKPR-HDS/(Brahmani Bridge)/25/37/6357 dated 09.07.2008. & RVNL Letter No.RVNL/BBS/Contract/

Br No.449, Brahmani(JKPR-HDS) 3rd Line/14/51/8669 dated 24th November'2009.

03. Employer : Chief Project Manager, Rail Vikas Nigam Limited, Plot No.HIG-68, Buddha Park, Lumbini Vihar, Bhubaneswar – 751 016.

04. Contractor : M/s. BEB-DDS-RKD-JV, 72/A, Mancheswar Industrial Estate, Bhubaneswar – 751 010.

06.	Reference Dra	wing No. :	BA-11501 TO 11518.						
SI.	Component &	Characteristic to be	Mode of Inspection.		Checking.	Reference	Acceptance Norm.	Formats &	Remarks.
No.	Operation.	Checked.		Fabricator.	Inspection	Document.		Records.	
Α	В	С	D	E	Authority. F	G	Н	1	1
1.0	RAW MATERIAS								<u> </u>
1.1	Steel Plates, Steel Structural Sections should be from approved sources by RDSO.	a) Receipt particulars with Mill Test Certificates. b) Material conditions. c) Dimensional verification. d) Mechanical & Charpy test, V notch at 0°C. e) Charpy test at 0°C for plates. f) Chemical (C, Mn, Si, P, & S) composition. g)UST as in Mill TC.	a) Identification & Corelation. b) Plates fully killed & normalized / control cooled. c) Visual Pitting, rusting etc., d) Measurement. e) UTS, YS EL% Bend. f) Charpy at 0°C for 12 mm & above MS Plates.	100% of Items.	100% by RNVL, & verification of certificates & test reports by RDSO.	documents, Manufacturers Test Certificates	Specification: IS: 2062-GrB, as per drawing. Plates below 12 mm. thick are GrB fully killed. Plates 12 mm. thick & above are Gr-B fully killed & normalized/control cooled, UTS quality.	Receipt documents, Manufactures Test Certificates. IRS B1-2001 Appendix-I Table No.7. Heat wise & lot wise check of material from NABL Accredited Laboratory.	sources only.
1.2	Rivets & Bolts.	a) Visual. b) Dimensional. c) Material Quality.	a) Visual Checking. b) Measurement. c) Chemical Analysis & Physical Test.	Random per lot item a), b) & c) in col. C.	RVNL.	Manufacturers Test Certificates	Specification IS: 1148, IS: 1929 & IS: 1367 (Part-III).	Manufactures Test Certificates	Rivets & Bolts will be supplied by approved vendors.
1.3	Paints.	Name of Paints, Name of Manufactures with IS specification, Batch Nos. & Dates of Manufacture TC	Identification & Co- relation with Document Checking of T.C.	100% of Items	RVNL.	Order copies, receipts, document & manufactures Test Certificates.	Specification of Paints as per Contract. 3 rd Party T.C's & IRS B1-2001.	Receipt document, Manufactures T.C's, 3 rd Party Test Certificates.	All Paints will be supplied form approved Paint Manufactures

QAP FOR STEEL

ä.	Component &	Characteristic to be	Mode of Inspection.	Extent of	Checking.	Reference	Acceptance Norm.	Formats &	Remarks.
0.	Operation.	Checked.		Fabricator.	Inspection Authority.	Document.		Records.	
A	В	C	D	E	F	G	Н		J
.0	RAW MATERIAS								
.1	Steel Plates,	a) Receipt particulars	a) Identification & Co-	100% of	100% by	Reference	Specification: IS:	Receipt	All Raw Steel
	Steel Structural	with Mill Test	relation.	Items.	RNVL, &	documents,	2062-GrB, as per	documents,	Material will be
	Sections should	Certificates.	b) Plates fully killed &		verification of	THIS IS IN VIOLENCE OF THE	drawing.	Manufactures	supplied by
	be from approved	 b) Material conditions. 	normalized / control		certificates &	Test Certificates	Plates below 12	Test Certificates.	SAIL/TISCO/RINL/
	sources by	c) Dimensional	cooled.		test reports by		mm. thick are GrB	IRS B1-2001	JINDAL & or From
	RDSO.	verification.	c) Visual Pitting, rusting		RDSO.		fully killed. Plates	Appendix-I Table	RDSO approved
		d) Mechanical &					12 mm. thick &	No.7.	sources only.
		Charpy test, V notch	d) Measurement.				above are Gr-B	Heat wise & lot	
		at 0°C.	e) UTS, YS EL% Bend.				fully killed &	wise check of	
		e) Charpy test at 0°C for					normalized/control	material from	
		plates.	mm & above MS				cooled, UTS	NABL Accredited	
		f) Chemical (C, Mn, Si,	Plates.				quality.	Laboratory.	
		P, & S) composition.							
		g)UST as in Mill TC.							

WPQR - (WELDING PROCEDURE QUALIFICATION RECORD)

w rate
min.)
$\overline{}$
- 1

WELDING PARAMETERS FOR WPQR

Name & Address of Fabricator		:			
Description of weld Joint		:			
Welding procedure specification r	10.	:			
Name of Welder		:			
Date of preparation of test piece		:			
Dimension of test piece		:			
Base Metal		:			
Welding Process		:			
Welding Position		:			
Welding Current :	Туре	:	Polarity	:	
Weld joint design details		:			
Welding consumables		:			
Electrode/Wire Class :		Dia	: Drying	method	:
Flux :	Туре	:	Drying	method	:
Shielding gas		:			
Welding Parameters					
Weld Electrodes/ Curr	ent Arc Voltage	Wire Feed	Travel	lectrical stick	Gas flow rate
Pass No. wire dia (mm) (Amp	o.) (Volt)	Speed (m/min)	Speed (m/mi	out (mm)	(liter/ min.)
1 2 3	4	5	6	7	8

TESTS FOR WPQR

ING-IABSE Workshop on "Design, Construction and Maintenance of Steel Bridges", Dehradun, 19th & 20th October, 2024

Non-destructive Tests:

- j) Visual Examination.
- ii) Dye Penetrate test.
- iii) Magnetic particle test.
- iv) Radiographic/Ultrasonictest.

Destructive Test

- i) Micro-examination.
- ii) Hardness survey:
- iii) Fillet weld fracture test
- iv) Transverse tensile test: Tensile strength Yield Stress Location of fracture.
- v) All-weld tensile test. Tensile strength. Yield stress Elongation %
- vi) Guided bend test : Root bend test : Face bend test :

Side bend test:

vii) Any other test

WPSS-(WELDING PROCEDURE SPECIFICATION SHEET) (1/2)

Nan	ne and address of Fabricator	:	M/s. B. Engineers & Builders Ltd., 72/A, Mancheswar Industrial Estate Bhubaneswar – 751010, Orissa
Wel	ding Procedure Specification No.	:	BEB/WPS/088 Dated 18.07.2008
01.	RDSO Drawing No.	:	RDSO/BA – 11507
02.	Welding Joint Description	:	Fillet
03.	Base Metal	:	IS:2062 – 99, Gr. B, Fully Killed, Normalized/Control cooled
04.	Welding Process	:	SAW
05.	Welding Pocess Welding Position	:	Flat
06.	Welding Consumable	:	Tat
6.1	Electrode/Wire	<u> </u>	
0.1	Class	١.	W1 of IRS M 39 –2001
		:	
	Type Drying Method	:	Copper Coated Mild Steel Wire N.A
6.2	Flux	-	N.A
0.2	Class	:	F1 of IRS M 39 – 2001
	Type		Agglomerated
	Drying method	:	250 °C for 1 (one) hour before use
6.2		<u> </u>	NA
6.3	Sheilding Gas	:	
07.	Base Metal Preparation	:	Fusion Faces and adjacent surfaces are cleaned and made free from Notches, Mill Scale, Grease, Paint, Rust etc., which may affect weld quality
7.1	Toint Design details		Notches, Will Scale, Grease, Paint, Rust etc., Willen may affect weld quan
7.1	Joint Design details (Sketch showing arrangements of parts		
	groove details, weld passes & their sequence		
7.2	Joint Preparation	:	As per IS: 4353 – 1995, Cl.7, IRS B1 – 2001, Cl.17.3 & WBC – 2001
08.	Welding Current		
	Туре	:	DC
	Polarity	:	Reverse
09.	Welder's Qualification	:	As per IS:7310 (Part – I) – 1974
10.	Welding Parameters & Technique	:	

П	10.	Welding Parameters & Technique	:	
Ш	09.	Welder's Qualification		As per IS:7310 (Part – I) – 1974
П		Polarity		Reverse
		Type		DC

WPSS-(WELDING PROCEDURE SPECIFICATION SHEET) (2/2)

10.1 Welding Weld Pass No.		Current	Δ το	L Voltage	Wire Feed	Travel Speed	Electrical	Gas Flow
Welu Fass No.	Wire dia.	(Amps)	(Vo		Speed	(m/min)	Stick out	(l/min)
	(mm)	(Amps)	(10	113)	(m/min)	(111/11111)	(mm)	(1/11111)
1	4	400-500	25 -	30	0.8 - 1.2	0.5 - 0.7	15 - 20	NA
2	4	400-500	25 -		0.8 - 1.2	0.5 - 0.7	15 –20	NA
3	4	400-500	25 -		0.8 - 1.2	0.5 - 0.7	15 - 20	NA
4	4	400-500	25 -		0.8 - 1.2	0.5 - 0.7	15 - 20	NA
10.2 Welding	Sequence & Tecl		T:			run-off tabs at the		
					Į.	0 0		
11. Provision	of run-on/run of	f tabs	:	Yes				
	of weld bead bef		:	N.A				
side of w	paration before eld groove		:	N.A				
	ng & Inter pass to	emperature	:	N.A				
15. Peening			:	N.A				
	d treatment		:	N.A				
	tion of weld defe	ct	:			olete removal of o	defective weld	
	n of weld		:		D. P Test & Mac			
19. Any othe	r relevant details		:	Fillet we	ld of Portal Gird	er		
	r relevant details		:		ld of Portal Gird			
TO, LIISPECTO	n of weld			Visual,	D. P Test & Mac	TO-EIGHING		
	non or weld defe					plete removal of o		

WPSS- WELDING PARAMETERS (1/2)

Nam	e and address of Fabricator	:	M/s. B. Engineers & Builders Ltd., 72/A, Mancheswar Industrial Estate Bhubaneswar – 751010, Orissa
Weld	ding Procedure Specification No.	:	BEB/WPS/088 Dated 18.07.2008
01.	RDSO Drawing No.	:	RDSO/BA – 11507
02.	Welding Joint Description	:	Fillet
03.	Base Metal	:	IS:2062 – 99, Gr. B, Fully Killed, Normalized/Control cooled
04.	Welding Process	:	SAW
05.	Welding Position	:	Flat
06.	Welding Consumable	:	
6.1	Electrode/Wire Class Type Drying Method	:	W1 of IRS M 39 –2001 Copper Coated Mild Steel Wire N.A
6.2	Flux		
	Class	:	F1 of IRS M 39 – 2001
	Туре	:	Agglomerated
	Drying method	:	250 °C for 1 (one) hour before use
6.3	Sheilding Gas	:	NA
07.	Base Metal Preparation	:	Fusion Faces and adjacent surfaces are cleaned and made free from Notches, Mill Scale, Grease, Paint, Rust etc., which may affect weld quality
7.1	Joint Design details		
	(Sketch showing arrangements of parti- groove details, weld passes & their sequence		Welding flux Welding flux Welding flux Welding flux
7.2	Joint Preparation	:	As per IS: 4353 – 1995, Cl.7, IRS B1 – 2001, Cl.17.3 & WBC – 2001
08.	Welding Current		
	Туре	:	DC
	Polarity	:	Reverse
09.	Welder's Qualification	:	As per IS:7310 (Part – I) – 1974
10	Welding Parameters & Technique		
09.	Welder's Qualification Welding Parameters & Tachnique		As per IS:7310 (Part – I) – 1974
00	Polarity Welder's Qualification	-	Reverse As par IS:7310 (Part - D - 1974
	Dolonity.		Danama

WPSS- WELDING PARAMETERS (2/2)

1	10.1 Welding Weld Pass No.		Current (Amps)	Arc (Vo	Voltage lts)	Wire Feed Speed (m/min)	Travel Speed (m/min)	Electrical Stick out (mm)	Gas Flow (l/min)
3	1	4	400-500	25 -	30	0.8 - 1.2	0.5 - 0.7	15 - 20	NA
4	2	4	400-500	25 -	30	0.8 - 1.2	0.5 - 0.7	15 –20	NA
10.2 Welding Sequence & Technique Sequence & Technique Sequence	3	4	400-500	25 -	30	0.8 - 1.2	0.5 - 0.7	15 - 20	NA
24 28 32 36 40V	4	4	400-500	25 -	30	0.8 - 1.2	0.5 - 0.7	15 - 20	NA
24 28 32 36 40V Igure 2. How a change in arc voltage affects the shape of weld. Welding current is constant. Provision of run-on/run off tabs Yes	10.2 Welding	Sequence & Te	chnique	1:	Welding	from Center to r	u 1-off tabs at the	ree ends	
12. Cleaning of weld bead before laying next weld bead 13. Root Preparation before welding other side of weld groove 14. Pre-heating & Inter pass temperature 15. Peening 16. Post weld treatment 17. Rectification of weld defect 18. Inspection of weld 18. Inspection of weld 18. Visual, D. P Test & Macro-Etching									/ //
next weld bead 13. Root Preparation before welding other side of weld groove 14. Pre-heating & Inter pass temperature : N.A 15. Peening : N.A 16. Post weld treatment : N.A 17. Rectification of weld defect : By re-welding after complete removal of defective weld 18. Inspection of weld : Visual, D. P Test & Macro-Etching					igure 2. Ho			••	
side of weld groove 14. Pre-heating & Inter pass temperature : N.A 15. Peening : N.A 16. Post weld treatment : N.A 17. Rectification of weld defect : By re-welding after complete removal of defective weld 18. Inspection of weld : Visual, D. P Test & Macro-Etching				:	igure 2. Ho			••	
15. Peening : N.A 16. Post weld treatment : N.A 17. Rectification of weld defect : By re-welding after complete removal of defective weld 18. Inspection of weld : Visual, D. P Test & Macro-Etching	12. Cleaning	of weld bead b		:	igure 2. Ho			••	
16. Post weld treatment : N.A 17. Rectification of weld defect : By re-welding after complete removal of defective weld 18. Inspection of weld : Visual, D. P Test & Macro-Etching	12. Cleaning next weld 13. Root Pro	of weld bead b d bead eparation before	efore laying	: :	Yes N.A			••	
17. Rectification of weld defect : By re-welding after complete removal of defective weld 18. Inspection of weld : Visual, D. P Test & Macro-Etching	12. Cleaning next welder 13. Root Preside of w	of weld bead b d bead eparation before reld groove	efore laying welding other	: : : : : : : : : : : : : : : : : : : :	Yes N.A			••	
18. Inspection of weld : Visual, D. P Test & Macro-Etching	12. Cleaning next weld13. Root Proside of w14. Pre-heating15. Peening	of weld bead bead bead bead bead eparation before eld groove ing & Inter pass	efore laying welding other	:	Yes N.A N.A N.A N.A			••	
	 12. Cleaning next welden 13. Root Preside of w 14. Pre-heating 15. Peening 16. Post welden 	of weld bead bead bead bead bead eparation before eld groove ing & Inter pass	e welding other temperature	:	Yes N.A N.A N.A N.A N.A	ow a change in arc volt	age affects the shape o	of weld. Welding cu	urrent is constant.
19. Any other relevant details : Fillet weld of Portal Girder	 12. Cleaning next welden 13. Root Proside of w 14. Pre-heating 15. Peening 16. Post welden 17. Rectification 	of weld bead bead bead bead eparation before eld groove ing & Inter pass detreatment etion of weld details	e welding other temperature	:	Yes N.A N.A N.A N.A N.A By re-we	ow a change in arc volt	age affects the shape of	of weld. Welding cu	urrent is constant.
	 12. Cleaning next well- 13. Root Preside of w 14. Pre-heating 15. Peening 16. Post well- 17. Rectification 18. Inspection 	g of weld bead bead bead bead eparation before yeld groove ing & Inter pass detreatment attion of weld determined by the second of weld bead by the second s	efore laying e welding other temperature fect	: : : : : : : : : : : : : : : : : : : :	Yes N.A N.A N.A N.A Visual,	elding after comp	age affects the shape of the sh	of weld. Welding cu	urrent is constant.
	 12. Cleaning next well- 13. Root Proside of w 14. Pre-heating 15. Peening 16. Post well- 17. Rectification 18. Inspection 19. Any other 	g of weld bead bead bead bead eparation before yeld groove ing & Inter pass detreatment attion of weld determined by the second of weld bead by the second s	efore laying e welding other temperature fect	: : : : : : : : : : : : : : : : : : : :	Yes N.A N.A N.A N.A N.A Visual,	elding after comp	age affects the shape of the sh	of weld. Welding cu	urrent is constant.

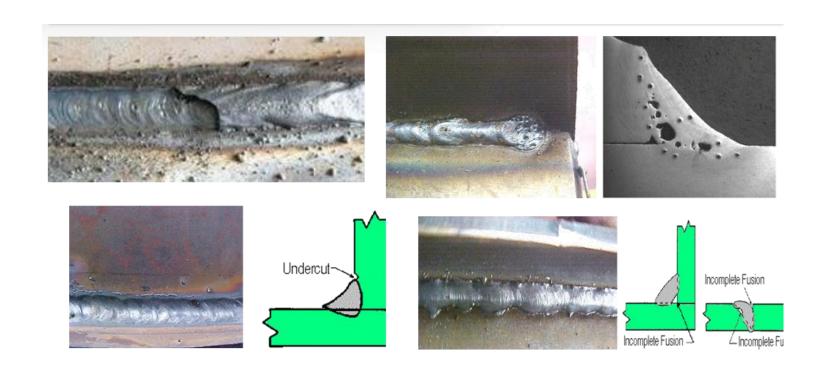
WELD EFFECT

MICRO ETHCHING

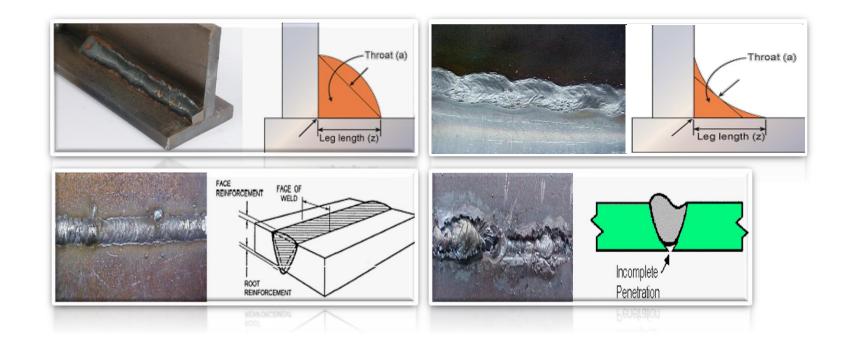
IMAGE 1 : Good Fusion

IMAGE 2 : Deeper Penetration, High Voltage

IMAGE 3 : Improper Fusion


IMAGE 4 : Improper Fusion

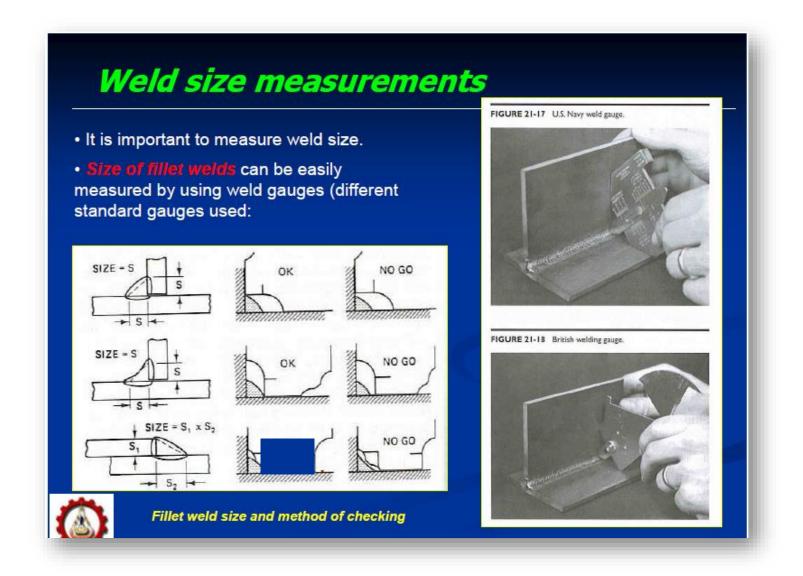
SLAG, PIN HOLES, UNDERCUT AND INCOMPLETE FUSION



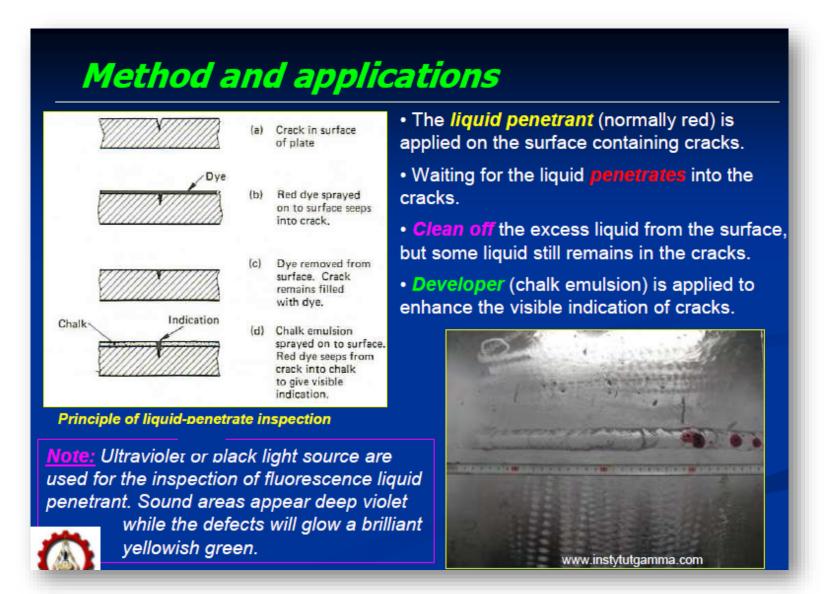
EXCESSIVE CONVEXITY, CONCAVITY, WELD REINFORCEMENT AND INCOMPLETE FUSION

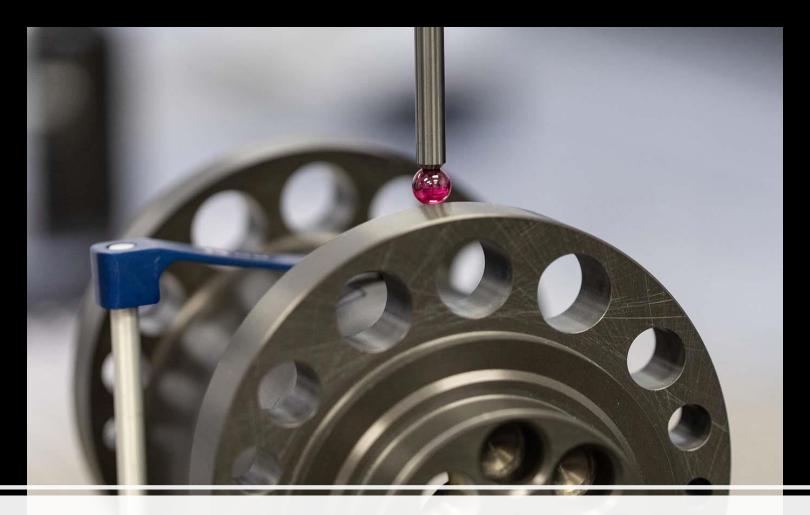
TESTING OF WELDS

NON-DESTRUCTIVE TESTING OF WELDS


- 1. Visual Inspection
- 2. Liquid Penetrant Inspection
- 3. Magnetic- particle Inspection
- 4. Radiography
- 5. Ultrasonic Inspection

WELD SIZE MEASUREMENT

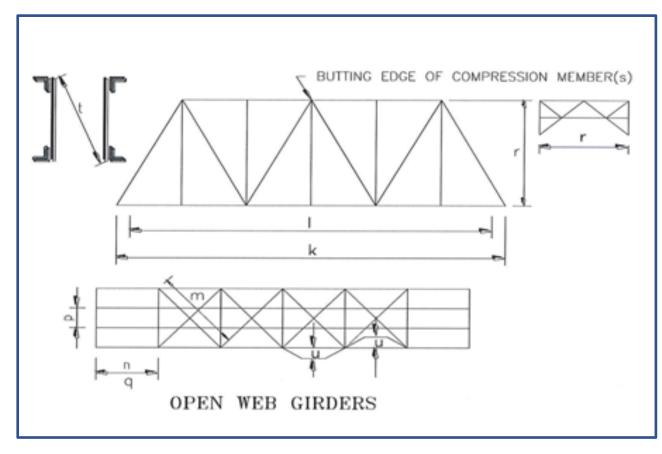




LIQUID PENTRANT INSPECTION (2/3)

TOLERANCES

FABRICATION TOLERANCE IN GIRDERS


		TOLERANC	E IN MM.	NATIONAL IN THE FIGURE
OPEN '	WEB GIRDER	(PLUS)	(MINUS).	NO.1
a)	Overall length of Girders	1	1	К
b)	Distance between centre to centre of bearings	1	1	L
c)	Cross diagonals of assembled bays	1	1	M
d)	Centre to centre of cross girders	1	1	N
e)	Centre to centre of Rail bearer	1	1	Р
f)	Panel length in lateral bracing system	1	1	Q
g)	Distance between inter section line of chords vertical & horizontal	1	1	R
h)	Butting edges of compression members i) Throughout ii) Locally	0 0	0.15 0.25	S S
i)	Twist in members.	0	0	Т
j)	Lateral distortion between points of lateral support	.001L	.001L	U
10150		TOLERANC	E IN MM.	NATIONAL IN THE FIGURE
HOLES		(PLUS)	(MINUS).	NO.3
a)	Between any two holes in group	0.5	0.5	V
b)	Between holes of one group and another	1	1	W
c)	Edge distance.	0.5	0.5	X
d)	Distance of 'GO' gauge open holes in two or more thickness.	0	0.8	Υ

FABRICATION TOLERANCE IN GIRDERS (1/4)

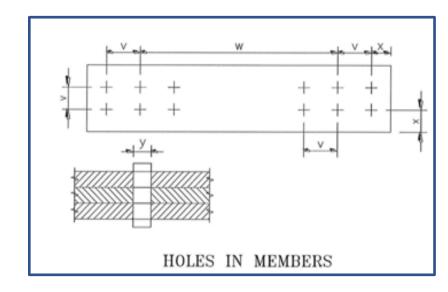
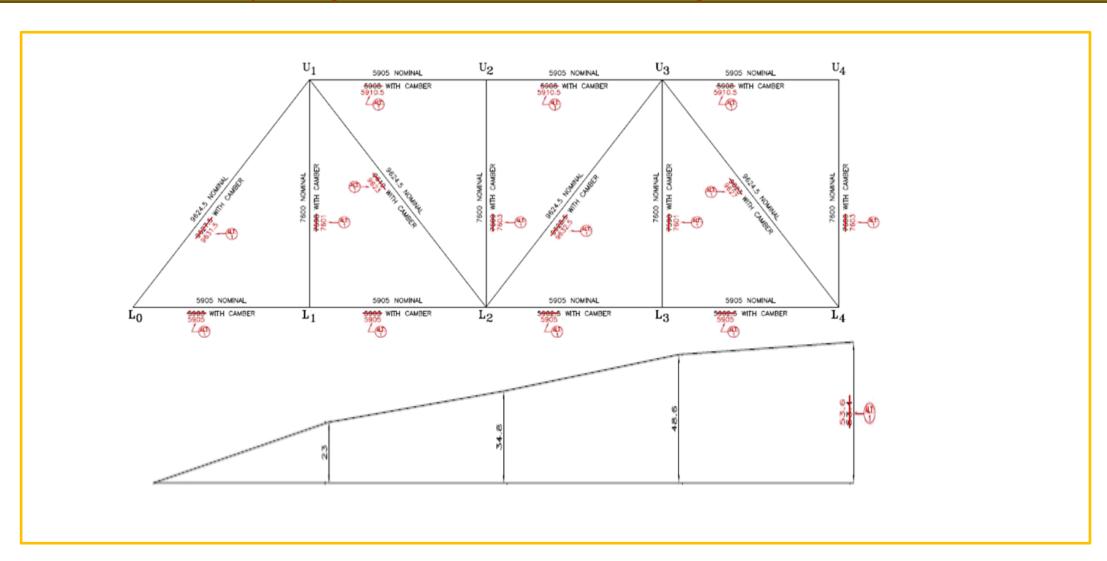


Figure 2

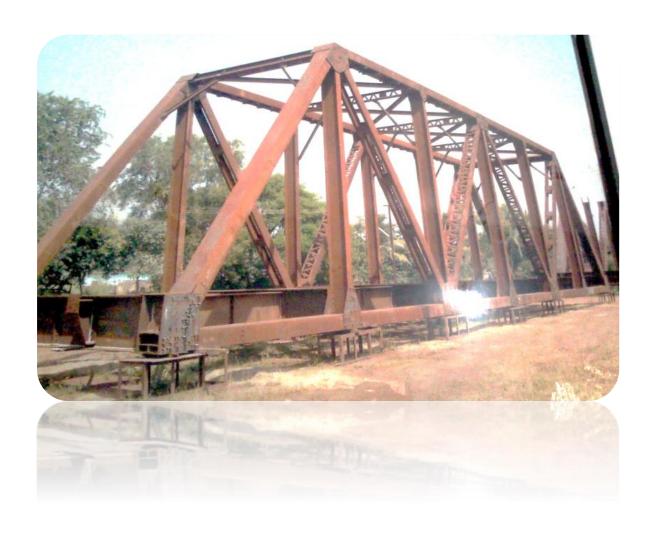
Figure 1

FABRICATION TOLERANCE IN GIRDERS

		TOLERANC	E IN MM.	NATIONAL IN THE FIGURE
OPEN '	WEB GIRDER	(PLUS)	(MINUS).	NO.1
a)	Overall length of Girders	1	1	К
b)	Distance between centre to centre of bearings	1	1	L
c)	Cross diagonals of assembled bays	1	1	M
d)	Centre to centre of cross girders	1	1	N
e)	Centre to centre of Rail bearer	1	1	Р
f)	Panel length in lateral bracing system	1	1	Q
g)	Distance between inter section line of chords vertical & horizontal	1	1	R
h)	Butting edges of compression members i) Throughout ii) Locally	0 0	0.15 0.25	S S
i)	Twist in members.	0	0	Т
j)	Lateral distortion between points of lateral support	.001L	.001L	U
10150		TOLERANC	E IN MM.	NATIONAL IN THE FIGURE
HOLES		(PLUS)	(MINUS).	NO.3
a)	Between any two holes in group	0.5	0.5	V
b)	Between holes of one group and another	1	1	W
c)	Edge distance.	0.5	0.5	X
d)	Distance of 'GO' gauge open holes in two or more thickness.	0	0.8	Υ


TRIAL ASSEMBLY

CAMBER

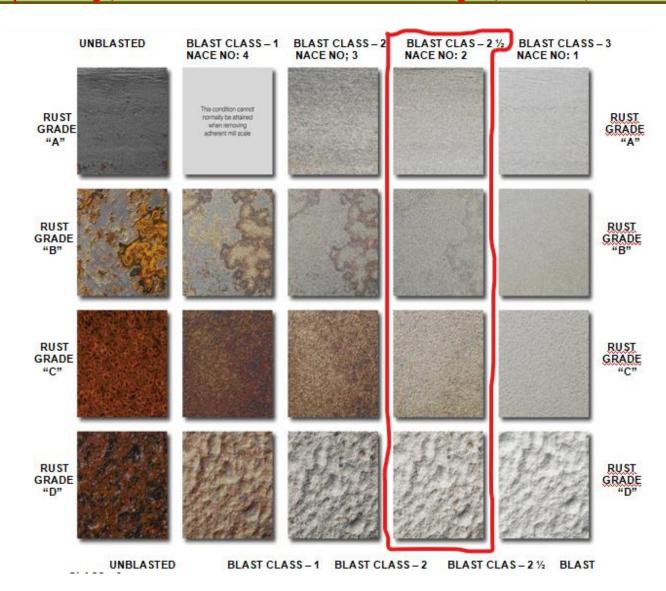


TRIAL ASSEMBLY PROCEDURE (1/2)

- ✓ Camber jacks are put below each joint
- ✓ Mismatching holes in packs shall be rimmed
- ✓ Fifty percent holes should be on drifts

TRIAL ASSEMBLY PROCEDURE (2/2)

- ✓ Dimensions to be checked
- ✓ Camber at node points to be taken by levelling instruments


PROTECTION AGAINST CORROSION

BLAST SURFACE CLASSIFICATION

DESIRED LIFE OF COATING SYSTEM IN DIFFERENT ENVIRONMENT

SL.	ATMOSPHERIC CONDI-			COA	TING SYSTEM	M	
NOS.	TIONS / ENVIRONMEN- TAL CLASSIFICATIONS	а	b	С	d	e	f
01	NOMINALINLAND (RU- RALAND URBAN AREAS), MILD.	12 YEARS	18 YEARS	20 YEARS	ABOUT 20 YEARS	ABOUT 20 YEARS	ABOVE 20 YEARS
02	POLLUTED INLAND (HIGH AIRBOME SULPHUR DIO- XIDE), MODERATE.	10 YEARS	15 YEARS	12 YEARS	ABOUT 18 YEARS	15-20 YEARS	ABOVE 20 YEARS
03	NORMAL COATAL (AS NORMAL INLAND PLUS HIGH AIRBOME SALT LE-VELS), SEVERE.	10 YEARS	12 YEARS	20 YEARS	ABOUT 20 YEARS	ABOUT 20 YEARS	ABOVE 20 YEARS
04	POLLUTED COASTAL (AS POLLUTED INLAND PLUS HIGH AIRBOME SALT LEVELS), VERY SEVERE OR EXTREME.	8 YEARS	10 YEARS	10 YEARS	ABOUT 185YEARS	15-20 YEARS	ABOVE 20 YEARS

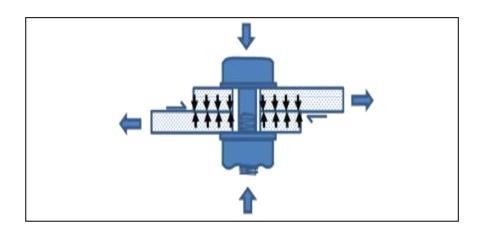
SPECIFICATION FOR DIFFERENT COATING SYSTEM (SHOP)

SL.	PROTECTION	COATING SYSTEM							
NOS.	PROTECTION	a	b	C	d	e	f		
01	SURFACE PREP- ARATION	BLAST CLEAN	BLAST CLEAN	BLAST CLEAN	BLAST CLEAN	GRIT BLAST	BLAST CLEAN		
02	PRE- FABRICATION PRIMER	ZINC PHOS- PHATE EPOXY, 20	TWO PACK ZINS RICH EPOXY, 20 µm	-	TWO PACK ZINS RICH EPOXY, 20 µm	-	ETHYLE ZINC SILICATE, 20		
03	POST- FABRICATION PRIMER	HIGH-BUILD ZINC PHOS- PHATE MOD- IFIED ALKYD, 60 µm	TWO PACK ZINS RICH EPOXY, 20 µm	HOT DIP GALVA- NIZED 85	TWO PACK ZINS RICH EPOXY, 25 µm	SPRAYED ZINC OR SPRAYED ALUMINIUM	ETHYL ZINC SILICATE, 60		
04	INTERMEDIATE COAT	-	HIGH-BUILD ZINC PHOS- PHATE, 25 µm	-	TWO PACK MICACEOUS IRON OXIDE, 85 µm.	SEALER	CHLORI- NATED RUBBER ALKYD, 35		
05	TOP COAT	-	-	-	TWO PACK MICACEOUS IRON OXIDE, 85 µm.	SEALER	_		

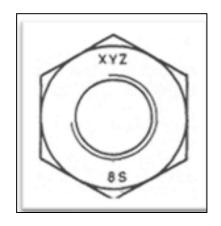
SPECIFICATION FOR DIFFERENT COATING SYSTEM (SITE)

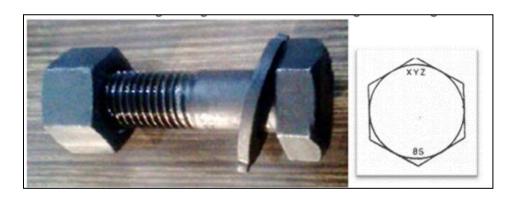
SL. NO.	PROTECTION		COATING SYSTEM								
NO.		a	b	C	d	е	f				
01	SURFACE PREPARATION	AS NECES- SARY	AS NECES- SARY	NO SITE TREATMENT	AS NECES- SARY	NO SITE TREAT- MENT	AS NECES- SARY				
02	PRIMER	TOUCH IN	TOUCH IN			-	TOUCH IN				
03	INTERMEDIATE COAT	•	MODIFIED ALKYD MI- CACEOUS IRON OXIDE, 50 µm	•	TOUCH IN	•	HIGH-BUILD MICACEOUS IRON OXIDE / CHLORINATED RUBBER MI- CACEOUS, 75				
04	TOP COAT	HIGH-BUILD ALKYD FINISH, 60	MODIFIED ALKYD MI- CACEOUS IRON OXIDE, 50 µm,	-	HIGH-BUILD CHLORI- NATED RUB- BER	-	HIGH-BUILD IRON OXIDE CHLORINATED RUBBER, 75				

ASSEMBLY & ERECTION



HSFG BOLT NOMENCLATURE




ING-IABSE Workshop on "Design, Construction and Maintenance of Steel Bridges", Dehradun, 19th & 20th October, 2024

Friction along interface transmits load in case of HSFG Bolt subject to shear

Typical Marking on Nuts

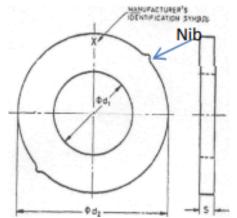
A bolt assembly

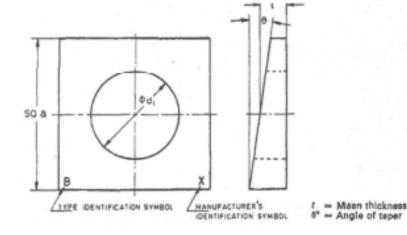
Typical Marking on bolt-heads

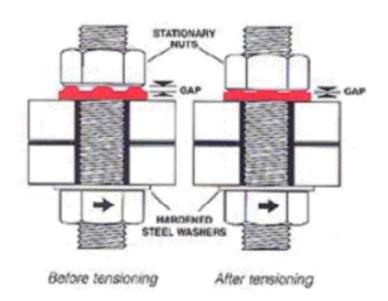
The property class of bolts 8.8 is embossed or indented as 8S

- ❖8 indicates-8000N/mm[^](ultimate)
- ❖8 indicates -80% of ultimate ,640N/mm[^] is the shear

HSFG WASHERS




ING-IABSE Workshop on "Design, Construction and Maintenance of Steel Bridges", Dehradun, 19th & 20th October, 2024



Two faces of DTI

Type A: Plain hole circular washers

Type B: Square taper washers for use with channels (6deg taper)

Type C: Square taper washers for use with I-beams (8 deg taper)

PRECAUTIONS - HSFG BOLT

- All the bolts, washers and nuts should be accompanied by manufacturer test certificates
- Appropriate markings indicating that these bolts are as per relevant codes should be checked
- Metalizing the surface which is to be connected by the HSFG bolts is permitted
- Painting the interface, which has been metalized, is not permitted
- Reusing a bolt, which has been fully tightened once, is not permitted

WIRE ROPE SPLICE TYPES

Hand spliced eye	s:	
Rope Diameter	Efficiency	
1/4"	90%	
5/16"	89%	
3/8"	88%	
7/16"	87%	
1/2"	86%	
9/16"	85%	
5/8"	84%	
3/4"	82%	
7/8" to 2-1/2"	80%	
Mechanical splic	ed eyes:	
Rope Diameter	Efficiency	
1/4" to 1"	95%	
1-1/8" to 2"	92.5%	
2-1/4" to 4-1/2"	90%	
Swage and spelt	er sockets:	

DIFFERENT HITCHES

ING-IABSE Workshop on "Design, Construction and Maintenance of Steel Bridges", Dehradun, 19th & 20th October, 2024

Vertical Pull:

A vertical pull is where a sling is hitched between the lifting device and load in a straight line.

Vertical Basket Hitch:

A vertical basket hitch is where the body of the sling supports the load being lifted and the two ends of the sling are attached to the lifting device.

Choker Hitch:

A choker hitch is where the eye on one end of the sling is passed through the eye on the other end of the sling and the sling is choked around the load being picked up. The chart below shows the capacity reduction of a sling used in a choker hitch.

Angle of Choke Degree	Rated Capacity %	
Over 120	100	
90-120	87	
60-89	74	30
30-59	62	LOAD
0-29	49	/

LOAD FACTOR ON SLINGS

ING-IABSE Workshop on "Design, Construction and Maintenance of Steel Bridges", Dehradun, 19th & 20th October, 2024

Load Factor Guidelines							
Leg Angle	Load Factor						
90°	1.000						
85°	1.003						
80°	1.015						
75°	1.035						
70°	1.064						
65°	1.103						
60°	1.154						
55°	1.220						
50°	1.305						
45°	1.414						
40°	1.555						
35°	1.743						
30°	2.000						

A. Vertical lift: Total load is 1,000 lbs. divided by two legs = 500 lbs. load per leg if if vertical lift

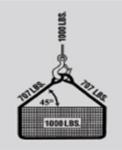

 B. Horizontal sling angle is 60 degrees:
 Multiply 500 lbs. by 1.154 load factor (from

table) = 577 lbs. actual load per leg.

A. Vertical lift: Total load is 1,000 lbs. divided by two legs = 500 lbs. load per leg if if vertical lift

B. Horizontal sling angle is 45 degrees: Multiply 500 lbs. by 1.414 load factor (from table) = 707 lbs. actual load per leg.

A. Vertical lift: Total load is 1,000 lbs. divided by two legs = 500 lbs. load per leg if if vertical lift

B. Horizontal sling angle is 30 degrees: Multiply 500 lbs. by 2.000 load factor (from table) = 1000 lbs. actual load per leg.

WARNING: Slings shall not be used with horizontal angles less than 30°.

ALL TERRAIN CRANES

CRAWLER CRANE

PLANNING BEFORE LIFTING

- ✓ **Details & arrangement of member** show sizes, capacities, and location of centre of gravity of each pick
- ✓ **False work and temporary support details** show sizes and capacities
- ✓ Crane capacity
 - Crane type,
 - Lifting capacity at given radius and orientation
 - Counterweight requirements
 - Boom length
- ✓ **Pick weight chart indicating** Weight of member, plus rigging and any attachments
- ✓ **Written procedure indicating** –Erection sequence for primary and secondary members, method of tie down of individual pieces, lateral bracing, and field splices.
- ✓ Releasing of the hook —Plan for the approach of rigger for unhooking

CRAWLER CRANE LOAD CHART

Radius in	Main boom length in meters								
meters	12,6	15,7	18,9	22,0	28,0	34,0	40,2		
2,5	120 000	_	_	_	_	_	-		
3	100 000	_	_	_	_	_	_		
4	84 000	69 000	66 000	52 000	_	_	_		
5	75 000	69 000	61 400	52 000	37 000	30 000	_		
6	70 000	67 000	54 000	48 400	37 000	29 800	21 000		
7	60 000	59 000	48 300	43 300	36 200	28 500	21 000		
8	52 000	50 000	43 400	38 800	33 700	27 000	20 000		
9	45 000	45 000	39 300	35 200	31 000	25 200	19 400		
10	40 000	39 900	36 000	32 100	28 200	23 400	18 600		
12	_	30 800	30 500	27 100	24 400	20 400	16 600		
14	_	_	23 900	23 200	21 100	17 900	14 800		
16	_	_	19 300	19 100	18 400	15 900	13 300		
18	_	-	_	15 700	16 200	14 300	12 000		
20	_	_	_	_	14 000	12 900	10 800		
22	_	_	_	_	12 000	11 600	9800		
24	_	_	_	_	10 300	10 700	9000		
26	_	_	_	_	_	9400	8200		
28	_	_	_	_	_	8200	7600		
30	_	_	_	_	-	7200	7000		
32	_	_	_	_	_	_	6400		
34	_	_	_	_	_	_	5700		
36	_	_	_	-	_	_	5100		
	When 8 m	extension is in sto	owed position, t	he rated loads r	nust be reduced	as follows:			
leduction of load (kg)	538	436	370	321	256	214	185		

PLANNING BEFORE LIFTING

- ✓ Details & arrangement of member show sizes, capacities, and location of centre of gravity of each pick
- ✓ **False work and temporary support details** show sizes and capacities
- ✓ Crane capacity
 - Crane type,
 - Lifting capacity at given radius and orientation
 - Counterweight requirements
 - Boom length
- ✓ Pick weight chart indicating Weight of member, plus rigging and any attachments
- ✓ Written procedure indicating –Erection sequence for primary and secondary members, method of tie down of individual pieces, lateral bracing, and field splices.
- ✓ Releasing of the hook —Plan for the approach of rigger for unhooking

TIPS ON CRANE SAFETY

- ✓ Working area restrictions and obstacles should be mapped before lifting.
- ✓ Crane should be Leveled (3deg tilt can reduce lifting capacity by50%)
- ✓ Centrifugal force Swinging should be slow and the job should never touch the boom when lifted
- ✓ Positioning of a load should not be done by side loading the boom
- ✓ The load should not be left suspended for a break or for the shift end stoppage
- ✓ Overhead power lines should be marked and the lift should be planned along with the crane operator and lift foreman

