Session-5: **Bowstring Girder Bridge** - Construction & **Design Challenges**

Umesh Rajeshirke Managing Director, SPECTRUM Techno Consultants Pvt Ltd

Bowstring Girder Bridge - Design Challenges

Mr. Umesh Rajeshirke, Managing Director of Spectrum Techno Consultants Pvt Ltd, has Over 35 years of experience in the Planning & Design of Bridges, Flyovers, Large Span Steel Structures, Marine facilities, Industrial structures, Prestressed and Reinforced Concrete Structures, Shell Structures.

He graduated from VJTI, Mumbai in 1987 and did his masters from IIT, Madras in 1991.

He is a member of various BIS and IRC committees and published number of papers in national & international conferences and journals.

Bowstring iron truss arch in USA, 1840 by Squire Whipple

(Sources: internet)

Bowstring Girder Bridges

- Efficient form of the structure
- Cost effective
- Aesthetically appealing
- Clear flow of the forces
- Track record since 1840s

However, there are challenges both in its design as well as construction.

Challenges in Design

- Buckling
- Susceptibility to Fatigue
- Design of end joint local FEM
- Connections details of hangers types (steel members, bars, strands)

Types of Arch bridges and their suitability

Types of Arch bridges and their suitability

Deck Arch Bridge

For crossing the valley with strong foundation at both sides

Through Arch Bridge

When the strata is weak Unable to bear the horizontal thrust

Semi Through Arch Bridge

When the strata is strong, The level of deck is fixed

Deck Arch Bridge

Spandrel (filled)

Spandrel (open)

Wahrew Arch Bridge - Sohbar, Meghalaya

Through Arch Bridge

Vertical Hanger Arch Bridge

Nielsen Arch Bridge

Network Arch Bridge

Preliminary design and Sizing of the elements The depth of Rib to Span ratio

Uniform solid arch rib:

For general arch, = 1/70 to 1/80For tied arch = 1/140 to 1/190

Non-Uniform solid arch rib:

Depth can be reduced towards hinges in hinged bridges, towards crown for fixed arches

Trussed Ribs:

For spans >200m For both clear and tied arch = 1/25 to 1/50

Challenges in Design **1. Buckling**

Challenges in Design Buckling

The problem is discussed with a practical example i.e. RDSO's standard Drawing of 62.1 m span girder

Elevation

Overall Length is **64.01 m** (Bearing c/c Span Length is **62.01 m**)

Crown height is 10 m (distance between centerline of Tie Girder and Arch Rib at Centre)

Deck width 12.2 m (Carriageway width 11.2 m) Bearing_c/c distance is 13.25 m (in Transverse direction)

Intermediate Bottom Cross Girder

SOFiSTiK Model of the Arch

Loading: DL

Wind Loading

Live loads: Class 70R and Class A

1) Impact Factor = 1.154

2) Congestion Factor For 62.01 m Span the Congestion Factor = <u>1.62</u> (From Table-7 of IRC-6-2017)

3) Lane Reduction Factor

For 3 Lane Carriageway, Lane reduction is **10%**, thus Lane Reduction Factor = <u>**0.9**</u> (*From Table-8 of IRC-6-2017*)

3 Class A Vehicles

70R + Class A Vehicle

Fatigue Train from IRC-6 Amendment Notification No.54

Fatigue Vehicle

Bending Moment (My-in plane) Diagram

Bending Moment (My-in plane) Diagram

Shear Force Diagram

Bending Moment in Arch Tie and Rib Due to 3 Class A vehicle - 2 Locations:

Forces in Hangers Due to 3 Class A vehicle:

Shear Force Diagram

Bending Moment (Mz-out of plane)Diagram

Bending Moment (My-in plane) Diagram

Bending Moment (My-in plane) Diagram

Forces in Hangers Due to Transverse Wind Load:

Bending Moment (Mz-out of plane)Diagram

Bending Moment (My-in plane) Diagram

With the forces obtained in various elements for different load cases –

1. Combine the forces using the load factors given in IRC6

- 2. Carryout sectional design
- 3. Design the joint/connections

Design for the Buckling

As the Ribs of the Arch Bridges are **Extremely slender**, they are susceptible to Buckling, thus, Compression members are designed accounting Global Buckling of Arch Bridge

As per IRC-24, for Compression Members, the Design Strength is calculated by:

$$Pd = A_e f_{cd}$$

Steps involved: Calculate f_{cd}

$$f_{cd} = \frac{f_y / \gamma_{m0}}{\phi + \left[\phi^2 - \lambda^2\right]^{0.5}} = \chi f_y / \gamma_{m0}$$

Calculate reduction factor, $\boldsymbol{\chi}$

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 + \overline{\lambda}^2}} \qquad \Phi = 0,5(1 + \alpha(\overline{\lambda} - 0,2) + \overline{\lambda}^2)$$

Calculate slenderness, λ

$$\overline{\lambda} = \sqrt{\frac{A \cdot f_{y}}{N_{ar}}}$$

Calculate critical buckling force, N_{cr}

Two methods:

Calculations provided in Annex- D of EN 1993-2 or
Carrying out Buckling analysis using FEM Software.

Imperfection factor α

Refer Table 4 from IRC 24-2010:

Cross Section	Limits	Buckling about axis	Buckling Class
Rolled I-Sections	$h/b_c > 1.2$: $t_c < 40 \text{ mm}$	Z-Z	a
У	, ,	<i>y-y</i>	b
	$40 \text{ mm} < t_f \le 100 \text{ mm}$	<i>Z-Z</i>	b
z z	1/1 < 1.2	<u>y-y</u> 7-7	b
	$h/b_f \le 1.2$: $t_f \le 100 \text{ mm}$	2-2	
+		y-y	
	(> 100	<i>z-z</i>	d
y	$t_f > 100 \text{ mm}$	<i>v-v</i>	d
Welded I-Sections			
<i>y y</i>		<i>z-z</i>	b
t, the state	$t_{\rm f} \le 40 \ {\rm mm}$	<i>y-y</i>	с
	,		
$h z \rightarrow e^{-w}$, $h \rightarrow e^{-w}$	$t_{f} > 40 \text{ mm}$	z-z	с
		<i>y-y</i>	d
b b			

Refer Table 3 from IRC 24-2010:

(Clauses 507.1.1 and 507.1.2.1)

Buckling Class	а	b	с	d	$\alpha = 0.24$
α	0.21	0.34	0.49	0.76	a = 0.34
Calculate critical buckling force, N_{cr}

Method 1: As per Annex- D of EN 1993-2

Now, given in New Guideline of IRC (B-9.4) on Arch Bridges

Buckling of Arch as per Annex- D of EN 1993-2

• The critical buckling force N_{cr} in the arch for **in plane buckling** is expressed by:

$$N_{cr} = \left(\frac{\pi}{\beta s}\right)^2 EI_y$$

 The critical buckling force in free standing arches for out of plane buckling is expressed by:

$$N_{cr} = \left(\frac{\pi}{\beta \cdot \ell}\right)^2 EI_z$$

Where,

 N_{cr} relates to the force at the supports;

 \overline{s} is the half length of the arch;

I is the projection length of the arch;

 $E_{ly} \& E_{lz}$ are the in plane & out of plane flexural stiffness of the arch;

 $\boldsymbol{\beta}$ is the buckling length factor

In-plane Buckling Factor β as per Annex- D of EN 1993-2

Properties of the Arch considered are as follows:

 $\frac{1.244 \times 10^5 \text{ kN}}{(\text{In-plane Critical Buckling Load})}$

Table D.4 - Arch with vertical Hangers.

Out of plane Buckling as per Annex- D of EN 1993-2

For out of plane buckling of Arches with **wind bracing and end portals**. The buckling length factor β may be taken from Table D.1 (EN 1993-2), using the geometry in Figure below :

where, \mathbf{h}_{r} is mean Length of all hangers divided by $\frac{1}{\sin(\alpha k)}$

Out of plane Buckling as per Annex- D of EN 1993-2

Properties of the Arch considered are as follows: Iz =7.996 \times 10⁹ mm⁴ E = 200 GPa h = 7.3 m h_r = 7.48m

$$\eta = \frac{EIb}{E_0 I_0 h}$$

$$Ncr = \left(\frac{\pi}{\beta h}\right)^2 E Iy$$
$$Ncr = \left(\frac{\pi}{0.80 \times 7300}\right)^2 200 \times 10^9 \times 7.996 \times 10^9$$

 $= 4.623 \times 10^5 \, kN$ (Out of plane Critical Buckling Load)

Calculate critical buckling force, N_{cr}

Method 2: Buckling analysis using FEM Software.

Method 2: Buckling analysis using FEM Software.

The method presented in Technical Paper of Hans De Backer published in 34th symposium of IABSE

The above method is simplified nonlinear finite element approach, where the Imperfection factors from Table D.8 (Eurocode 3) is to be considered.

Table D.8 of Eurocode 3 -1993-2

Table D.9 of Eurocode 3 -1993-2

Shape and amplitudes of imperfections for in plane buckling of arches

Shape and amplitudes of imperfections for out of plane buckling of arches

Load Case-2

• Two Cases of Loading for the Buckling analysis of the Arch are considered.

First mode shape of buckling of the Arch for Load Case-1 (Buckling Factor is **15.96**).

SOFISTIK

• Normal Forces from Buckling Analysis of the Arch for Load Case-1. (Max Compressive Force= **5042.9 kN** for Static Loading for the Load Case Considered)

Critical Buckling Force, Ncr = Compressive Force due to Static Loading \times Buckling Factor = 5042.9 \times 15.96 = **80485** kN

• First mode shape of buckling of the Arch for Load Case-2 (Buckling Factor is **11.6**).

Loadcases	Load D	Distributio
151 Buckling	1 fact	11.60
152 Buckling	2 fact	12.57
153 Buckling	3 fact	27.21
154 Buckling	4 fact	27.37
155 Buckling	5 fact	28.59
156 Buckling	6 fact	29.16
157 Buckling	7 fact	51.49
158 Buckling	8 fact	51.55
159 Buckling	9 fact	54.14
160 Buckling	10 fact	54.20

• Normal Forces from Buckling Analysis of the Arch for Load Case-2. (Max Compressive Force= **6965.5** kN for Static Loading for the Load Case Considered)

Critical Buckling Force, Ncr = Compressive Force due to Static Loading \times Buckling Factor = 6965.5 \times 11.6 = **80800** kN

N_{cr} for the Arch Rib = min (Ncr Case-1, Ncr Case-2)= min (80485,80800) = **80485** kN A = 85000 mm^2 fy = 390 MPa α = 0.34

Sr. No	Parameters	Formula	Value
1	Slenderness Ratio	$\overline{\lambda} = \sqrt{\frac{A \cdot f_{y}}{N_{cr}}}$	0.642
2	arphi Factor	$\Phi = 0,5(1+\alpha(\lambda-0,2)+\lambda^2)$	0.781
3	Reduction Factor	$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 + \lambda^2}}$	0.558

Snap through Buckling

Snap through Buckling:

Snap through of arches may be assumed to be prevented, if the following criterion is satisfied:

Displacement

Value of Factor K can be found using Table D.5 (Eurocode-3 -1993-2):

Table D.5: Factor K

Snap through Buckling:

The Section properties of the arch							
considered are as follows:	Table D.5: Factor <i>K</i> {for <i>f</i> / <i>l</i> = $\frac{10}{62.01}$ = <i>0.16</i> }						
f=10 m					02.0		
l = 62.01 m		<i>f/</i> ℓ	0,05	0,075	0,10	0,15	0,20
$A = 85000 mm^2$							
ly =1.219 $ imes$ 10 10 mm^4	о к	35	23	17	10	8	
E = 200 GPa		А	319	97	42	13	6

$$l\sqrt{\frac{EA}{12EIy}} = 62.01 \times 10^3 \times \sqrt{\frac{200 \times 10^9 \times 85000}{12 \times 200 \times 10^9 \times 1.219 \times 10^{10}}} = 45.74 > K \ (\approx 10) \qquad (OK)$$

Check for Fatigue

Bending Moment (Mz-out of plane) Diagram

Axial Force (Nx) Diagram

Fatigue Stress in Section:

σtotal, Axial τTn, Shear Stress

(σMy+ σMz+ σNx)

ON ALL FOUR CORNERS

8V

a) Limiting stress range for low fatigue,

 $f \leq 27 / \gamma_{mft}$

Where.

 $\gamma_{\rm mft} = 1.25$

b) Limiting no of cycles for low fatigue,

 $\left| N_{SC} < 5 \text{ X } 10^6 \left(\frac{27 / \gamma_{mft}}{\gamma_{fft} f} \right)^3 \right| = 0.818 \times 10^6 \text{ Cycles } (< 5 \text{ million assumed cycles})$

Where.

 $\gamma_{\rm fft} = 1.0$

Low fatigue - Fatigue assessment is not required for a member, connection or detail, if normal and shear design stress ranges, f, satisfy the above two conditions. As, above conditions are not satisfied (as per IRC-24 2010: Clause 511.2.2.3), Fatigue check is Required.

IRC-24 2010: Table 18

Partial Safety Factors for Fatigue Strength (γ_{mfr})

Inspection and Access	Consequence of failure			
	Fail-safe	Non-fail-safe		
Periodic inspection, maintenance and accessibility to detail is good	1.00	1.25		
Periodic inspection, maintenance and accessibility to detail is poor	1.15	1.35		

Fatigue Strength Calculations:

Design normal and shear fatigue stress for 5 million stress cycles:

IRC-24 2010: Table 19

iii)	92	E	Material with machine gas-cut edges with draglines or manual gas-cut material (7): Corners and visible signs of edge discontinuities to be removed by grinding in the direction of the applied stress.
xx)	67	(40)	Welds loaded in shear (39) : Fillet welds transmitting shear. Stress range to be calculated on weld throat area. (40) : Stud welded shear connectors (failure in the weld) loaded in shear (the shear stress range to be calculated on the nominal section of the stud).

(IRC-24 2010: Clause 511.4)

Normal Stress Range:

$$\begin{array}{ll} \text{when } 5 \; x \; 10^6 \leq N_{_{SC}} \leq 10^8 & \text{when } N_{_{SC}} \leq 5 \; x \; 10^6 \\ f_f = f_{_{fn}} \; \sqrt[3]{5x10^6 \, / \, N_{_{SC}}} & f_f = f_{_{fn}} \; \sqrt[3]{5x10^6 \, / \, N_{_{SC}}} \end{array}$$

 f_f au_f

Мра	92.00
Мра	67.00

(IRC-24 2010: Clause 511.2.1)

$$\mu_r = (25/t_p)^{0.25} \le 1.0$$

 $\begin{array}{l} \mu_{r, flange} = (25/tp)^{0.25} & 1.00 \\ \mu_{r, web} = (25/tp)^{0.25} & 1.00 \end{array}$

Fatigue Strength of Section:

 $f_{fd,flange} = \mu_r * f_f / \gamma_{mft}$ Mpa

 $\tau_{fd,web} = \mu_r * \tau f / \gamma_{mft}$ Mpa

49.63

Fatigue Stress in Section:

(OK)

Shear Stress:

$$\tau_{f} = \tau_{fn} \sqrt[5]{5x10^{6} / N_{SC}}$$

Design of End Segment of the Arch

The part of Segment connected to Tie Girder & Arch Rib is provided with Rigid Support. To avoid concentration of Load at support Extra part of Arch Rib and Tie Girder is Modeled. The SLS Forces with Maximum Vertical Force is considered and applied at Actual Support Location (at Bearing Location).

- Maximum Bearing force is applied at the Bearing Location on both the sides (LHS & RHS) of the Span. Load is Applied in the Form of Area Load at Bearing Location.
- The FEM analysis on **Plate Model** is carried out which gives Stress at different locations which are later compared with **maximum Stress Limit**.

Self Weight of Modeled Structure:

- Self Weight of modeled part is Activated.
- All the Individually applied loads are combined during Analysis and values of maximum Stress at different components/locations are obtained.

Overall Stress in Model

Stress in Diaphragm Stiffeners

Stress in Bearing and Jacking Stiffeners

Stress in Top & Bottom Flanges

Stress in Webs

Stress in Connection plates between End Segment and Bottom Cross Girder

Proper Connection Details

Cross girder to Tie Beam connections

MOMENT CONNECTION

SHEAR CONNECTION
Bowstring Girder Bridge - Design Challenges

BETTER DETAILING W.R.T WELDING

NOT GOOD DETAILING W.R.T WELDING

Bowstring Girder Bridge - Design Challenges

Hanger to Tie beam Connection Failure

Bowstring Girder Bridge - Design Challenges

Thank You